Sealing of Micromachined Cavities Using Chemical Vapor Deposition Methods: Characterization and Optimization

نویسندگان

  • Chang Liu
  • Yu-Chong Tai
چکیده

This paper presents results of a systematic investigation to characterize the sealing of micromachined cavities using chemical vapor deposition (CVD) methods. We have designed and fabricated a large number and variety of surface-micromachined test structures with different etch-channel dimensions. Each cavity is then subjected to a number of sequential CVD deposition steps with incremental thickness until the cavity is successfully sealed. At etch deposition interval, the sealing status of every test structure is experimentally obtained and the percentage of structures that are sealed is recorded. Four CVD sealing materials have been incorporated in our studies: LPCVD silicon nitride, LPCVD polycrystalline silicon (polysilicon), LPCVD phosphosilicate glass (PSG), and PECVD silicon nitride. The minimum CVD deposition thickness that is required to successfully seal a microstructure is obtained for the first time. For a typical Type1 test structure that has eight etch channels—each 10 m long, 4 m wide, and 0.42 m tall—the minimum required thickness (normalized with respect to the height of etch channels) is 0.67 for LPCVD silicon nitride, 0.62 for LPCVD polysilicon, 4.5 for LPCVD PSG, and 5.2 for PECVD nitride. LPCVD silicon nitride and polysilicon are the most efficient sealing materials. Sealing results with respect to etch-channel dimensions (length and width) are evaluated (within the range of current design). When LPCVD silicon nitride is used as the sealing material, test structures with the longest (38 m) and widest (16 m) etch channels exhibit the highest probability of sealing. Cavities with a reduced number of etch channels seal more easily. For LPCVD PSG sealing, on the other hand, the sealing performance improves with decreasing width but is not affected by length of etch channels. [281]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vacuum sealing using atomic layer deposition of Al2O3 at 250 C

This paper describes the use of low-temperature atomic layer deposition (ALD) of Al2O3, for vacuum seals in wafer-level vacuum packaging and other applications. The conformal coverage provided by ALD Al2O3 is shown to seal circular micromachined cavities. The cavities are 0.8 lm in height, 400 lm in diameter, and are capped by porous plasma-enhanced chemical vapor deposited dielectrics that for...

متن کامل

Pulsed DC- Plasma Assisted Chemical Vapor Deposition of α-rich Nanostructured Tantalum Film: Synthesis and Characterization

This paper is an attempt to synthesize nanostructured tantalum films on medical grade AISI 316L stainless steel (SS) using pulsed DC plasma assisted chemical vapor deposition (PACVD). The impact of duty cycle (17-33%) and total pressure (3-10 torr) were studied using field emission scanning electron microscopy (FESEM), grazing incidence x-ray diffraction (GIXRD), nuclear reaction analysis (NRA)...

متن کامل

Surface Micromachined Capacitive Ultrasonic Immersion Transducers - Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International W

Major steps used in fabricating surface micromachined capacitive ultrasonic immersion transducers are investigated in this paper. Such steps include membrane formation and cavity sealing under vacuum. Three transducer membrane structures are evaluated: a nitride membrane with an LTO sacrificial layer; a polysilicon membrane with an LTO sacrificial layer; and a nitride membrane with a polysilico...

متن کامل

esign and demonstration of PECVD multilayer dielectric mirrors optimized for icromachined cavity angled sidewalls

This paper reports on the design and implementation of high efficiency, nonmetallic reflectors integrated on the sidewalls of micromachined cavities. Due to shadowing from deposition within a cavity, significant variation in the thicknesses of the dielectric thin films composing the reflectors are encountered when the layers are deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD). Th...

متن کامل

Robust Optical Design of Angled Multilayer Dielectric Mirrors Optimized for Rubidium Vapor Cell Return Reflection

This paper reports on the design and implementation of thin film multilayer dielectric to form Bragg reflectors on the sidewalls of micromachined atomic cells. Due to deposition shadowing, significant variations in the thicknesses of the thin films are encountered when the layers are deposited using PECVD. These gradients in thickness may limit optical performance of the reflector in atomic cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999